Coding Standards for the NREL Commercial Buildings Group

Kyle S. Benne, Luigi Gentile Polese, Brent T. Griffith, Elaine T. Hale, Daniel L. Macumber,
Nicholas L. Long

National Renewable Energy Laboratory

December 8, 2010

Contents

1 INTRODUCTION e s s e 4
2 C++4 CODING STANDARDS e e 5
2.1 GENERAL GUIDELINESo i v vttt ittt e e e e e)
2.2 EXTERNAL REFERENCES et 5
2.2.1 References e e e e 5
2.2.2 Linkso 6
2.3 PROJECT LAYOUT e e e e 6
2.3.1 Project Files e e 6
2.8.2 Source Files e 6
2.8.8 FExternal Dependencies e e e e e e e e e e 7
2.4 NAMING oo 8
2.4.1 NameSPaces o v i e e e e e e e e e 8
2.4.2 Other Naming Conventions i i i ittt ittt e e 8
2.4.3 Naming DeScriptiveness o v v e e e e e 9
2.5 FILES e 9
2.5.1 Include Statements L e 9
2.5.2 Using Statements and Namespace Aliases 9
2.6 CLASSES o v vt 10
2.6.1 Object Oriented Design o i vttt e 10
2.6.2 Class Header Files e 11
2.6.3 Class Source Files e e 11
2.6.4 Class Definitions e 11
2.6.5 Code Definitions in Header Files i i it 12
2.6.6 Inheritance and Virtual Functions 13
2.6.7 Friends e 13

2.6.8 Nested Classes i i e e 13

2.7 FUNCTIONS e e 13
2.7.1 Inline oL 13
2.7.2 Function Overloading e 14
2.7.3 Passing argumentso e 14
2.74 Return values e e e 14
2.7.5 Const-Correctness v i i i e e e e 15

2.8 GENERAL ittt e 16
2.8.1 SUrings e e 16
2.8.2 Paths 16
2.8.8 Typedefs e e 17
2.8.4 Memory Management e e e e e e e e 17
2.8.5 Awoid Code Duplication e e e 17
2.8.6 Flow Control e 17
2.8.7 Serialization e e 17
2.8.8 SWIG Support o e e e e 18

2.9 CODE PORTABILITYo i ettt 19
2.9.1 Compiler Warnings o vttt e e e e 20
2.9.2 Exceplions e e e e 20
2.9.3 Logging e e 20
2.9.4 Unit Tests o o e e e e 22

2.0 FORMATTING o o o0ttt e e e e e 22
2.10.1 Indentation and Wrapping o e 22
2.10.2 Comments v i e e e 24
2.10.8 Old Code and Commented-out Code 27
2.10.4 Temporary Code e e 27

3 RUBY CODING STANDARDS e 29

3.1 PROJECT LAYOUT o e e e e s 29
3.2 NAMING . . . L oo s 29
3.3 UNIT TESTS . . . o o ot e e e e e e e e 30
3.4 INDENTATION AND WRAPPING« . o vttt ittt et e e e e e e e 30
3.5 COMMENTS . . . v v ittt e e e e e e e e 30

1 Introduction

The purpose of NREL’s coding standard is to manage the complexity of the programming languages used
in OpenStudio development while maintaining access to powerful features. The coding standard will help
existing developers, new team members, and subcontractors work together in a cohesive team to create
high quality software. Requiring the use of certain language features while prohibiting or restricting the
use of others is one aspect of a coding standard. The other aspect is enforcing common idioms, styles, and
conventions to help developers understand each other’s code.

This coding standards documentation provides a starting point and reference manual for OpenStudio devel-
opment. Developers should also become familiar with the continuous integration servers that run unit tests,
dynamic memory leak analysis, and code coverage analysis. The website http://openstudio.nrel.gov/
will be maintained as a landing page from which developers can access development environment set up
instructions; the project dashboard, svn repository, and trac; as well as updated versions of important
documentation, including this document.

http://openstudio.nrel.gov/

2 C++ Coding Standards

2.1 General Guidelines

These guidelines are not hard and fast rules, but rather general suggestions to keep in mind when making
design decisions.

e Aim for extensibility and reuse. Put code in libraries as opposed to GUIs, break functionality into
reusable pieces instead of large single-purpose chunks.

e Branch the svn repository if you need to make commits that will break the dashboard. Merge back as
soon as possible.

e Simplify public interfaces. Outward facing interfaces should not expose templates or advanced program-
ming concepts unless absolutely necessary. The public C++ interface should be as similar as possible
to the SWIG interfaces. Remember that the target audience for OpenStudio (users and developers,
C++ and SWIG targets) includes engineers with little programming experience.

e Implement generic interfaces first to allow access to the largest amount of functionality. Provide
specialized interfaces as needed later.

e Do not use advanced concepts unnecessarily, e.g. ”plmpl judiciously”. For example, objects which need
to be shared by many other objects should be implemented with the pImpl idiom, objects which do
not need features offered by pImpl should not use it.

e Write unit tests that outline the task first. This will help with scope creep, and keep our collection of
unit tests up to date.

e Use const to signify that a given method is not designed to modify a given class or input parameter,
but do not spend a lot of time on const correctness. Instead use a limited interface to assure that
object state remains valid.

e Especially when working on library code, make sure your objects and functions show up in the Doxygen
and RDoc documentation.

2.2 External References

In addition to these standards we recommend the following sources of information as high quality external
references for programming techniques and questions:

2.2.1 References
Meyers, S. (May 2005). Effective C++: 55 Specific Ways to Improve Your Programs and Designs. 3rd ed.
Addison-Wesley Professional.

Sutter, H. (Nov. 1999). Ezceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions.
illustrated edition ed. Addison-Wesley Professional.

Sutter, H.; Alexandrescu, A. (Nov. 2004). C++ Coding Standards: 101 Rules, Guidelines, and Best Practices.
Addison-Wesley Professional.

2.2.2 Links

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml, Google’s C++ coding style guide
http://www.boost.org/, online documentation and mailing lists

http://qt.nokia.com/doc/, online documentation
http://www.cmake.org/cmake/help/documentation.html, online documentation

http://stackoverflow.com/, online programming question and answer board

2.3 Project Layout

2.3.1 Project Files

We use CMake to generate Visual Studio projects and makefiles, because CMake enables cross-platform builds
and programmatic project management. Thus, our CMake files, as the very definition of the OpenStudio
project, are kept in the repository alongside the source files. Visual Studio projects and makefiles are
generated files that should not be modified or checked in to the repository.

2.3.2 Source Files

Header and source files are kept in the same directory. File names must start with a letter, and cannot
be all uppercase. File names follow UpperCamelCase convention, and can include digits, but not special
characters (including ., -, and _). Also, unit tests are stored in a test directory immediately beneath the
tested source code.

Files are named corresponding to the class that they contain, e.g. the class Building is located in Building.hpp
and Building.cpp. Typically we limit ourselves to one class per file. However, small helper classes may be
defined alongside a primary object, e.g. BuildingParameters could also be defined in Building.hpp and
Building.cpp. Impl classes should be defined in separate files, e.g. Building_Impl.hpp and
Building_Impl.cpp, to signify that users should not access these classes directly.

We use the following file extensions to differentiate between file types as well as whether or not the file is
autogenerated. Autogenerated files should not be modified by hand as they are rebuilt automatically during
the build process. Ensure that autogenerated files are deleted when the clean target is built and that they
are generated in the build rather than the source directory. Additionally, unit tests and test fixtures end in
_GTest.hpp, _GTest.cpp, Fixture.hpp, or Fixture.cpp respectively so they may be excluded from code
coverage analysis.

1. C header files — .h
2. C source files — .c
3. C++ header files — .hpp

4. C++ source files — .cpp

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://www.boost.org/
http://qt.nokia.com/doc/
http://www.cmake.org/cmake/help/documentation.html
http://stackoverflow.com/

© »®» N @

10.

Swig interface files — .i

Autogenerated header (C or C++) files (do not edit) — .hxx
Autogenerated source (C or C++) files (do not edit) — .cxx
Autogenerated Swig interface files (do not edit) — .ixx

Unit test files — *_GTest.hpp or *_GTest.cpp

Unit test fixtures — *Fixture.hpp or *Fixture.cpp

2.3.3 External Dependencies

Changing dependencies imposes a significant burden on the project, therefore decisions to add or remove
dependencies must be discussed by the entire team. To add a new dependency the following conditions must
be met:

1.
2.
3.
4.

Dependency license passes legal review
Must be active open source project with commercial adoption
Need for new functionality outside of current dependencies must be justified

Must be approved by majority of NREL OpenStudio team

Our current list of library dependencies, each of which meets these qualifications is:

o

10.

> W

© »® N2

boost
boost-log
Qt

Qwt
GTest
CLIPS
Expat
libssh
openssl

litesql

Our current list of executable dependencies, each of which meets these qualifications is:

1.

CMake

2. EnergyPlus

Radiance

LS

SWIG

ot

Ruby
Doxygen

Graphviz

® N>

DAKOTA

When selecting classes or items from a library to do a specific task we prefer to use more general libraries
and tools first as they place fewer restrictions on the code using them. If the functionality does not already
exist in OpenStudio we prefer to use, in order, the C++ Standard Template Library, boost, Qt. Certain
dependencies may not be required based on conditional configuration variables. Small libraries or tools may
be included directly in the main OpenStudio project and built using CMake. Large libraries or tools should
be installed separately. This reduces the start up cost of becoming a new developer.

2.4 Naming

2.4.1 Namespaces

The top level namespace for OpenStudio code will be openstudio. All classes and functions should be placed
in the openstudio namespace. All macro definitions are written in the global namespace.

Namespaces are all lowercase so they can be easily distinguished from classes. For instance,
openstudio: :energyplus: :ReverseTranslator indicates the ReverseTranslator class located in the names-

pace openstudio: :energyplus.

Namespace structure includes openstudio plus the first level of source code hierarchy, except that utilities is

not used as a namespace (openstudio: :IdfFile, not openstudio: :utilities::IdfFile or openstudio::utilities:

because classes in utilities are used widely throughout OpenStudio.

Use the detail namespace to hide classes or functions which are not meant to be part of the public interface
(e.g. openstudio::idd::detail::Idd0Object_Impl).

2.4.2 Other Naming Conventions

e Classes are upper camel case, e.g. DetailedGeometry
e Member functions and local variables are lower camel case, e.g. addVertex() and timeOfDay

e Private member variables are lower camel case prefixed with m_, e.g. m_name. Private member functions
are not prefixed with m_, member variables which are function pointers are prefixed by m_.

e Implementation classes using the pImpl idiom are postfixed by _Impl, e.g. IddFile_Impl.

;idf:

e Enumerations and enumerated items are upper camel case, e.g. enum Items{SmallItem, BigItem}
not enum Items{smallltem, bigItem}

e Unit test cases and fixtures are upper camel case. To ensure that test cases are easily recognizable in
standard output, use _ to indicate spaces, e.g. TEST_F (SolarSystemFixture,Moon_Constructor).

e For “getter” type methods (e.g. to get a name) we prefer object.name() to object.name or
object.getName (), unless the method accepts an argument. In that case we prefer a get prefix to clar-
ify the verb associated with the argument(s), for example object .getVariable(const String& varName)
is preferred to object.variable(const String& varName). The get prefix applies even when the ar-
gument is an index into an array. For example object.foos(), but object.getFoo(unsigned index)
is preferred to object.foo(unsigned index).

e For “setter” type methods (e.g. to set a name) we prefer object.setName(const String& name) to
object.name(const String& name).

2.4.3 Naming Descriptiveness

Names for namespaces, classes, variables, and functions should be sufficiently descriptive that they convey
their meaning and typical usage. We prefer to spell out words rather than use abbreviations to maintain
clarity and readability. Again, readable and comprehensive names are preferred over names that are short
and easy to type. Names should be as specific to the context as possible, e.g. Coordinate rather than Number.

Names with global scope should be distinctive and unique (however, global scope should be avoided when
possible).

2.5 Files

2.5.1 Include Statements

Reference files in your include statements from the top level OpenStudio source directory. For example,
#include <building/Building.hpp> rather than #include <Building.hpp> or #include "Building.hpp".

List include files in the following order:

1. Header files being implemented in this .cpp file.

[\

. Header files from the same project.

w

. Other OpenStudio header files.

4. External headers files, grouped by namespace (boost, std, etc.).

We prefer to surround include files with angle brackets rather than quotes.

2.5.2 Using Statements and Namespace Aliases

Do not

1. use any using directives in any header file at the file level.
2. use any namespace aliases in any header file at the file level.

3. use any using directives to expose all names in a namespace, e.g. ‘using namespace std’.

You may

1. use a class- or function-specific using declaration anywhere in a source file, e.g. using std::vector’.

2. use a class- or function-specific using declaration in functions, methods, or classes in .hpp files (below
file scope).

3. use a namespace alias anywhere in a source file, e.g. 'namespace building = openstudio::building’.

4. use a namespace alias in functions, methods or classes in .hpp files (below file scope).

2.5.2.1 Include Guards

Every header file must contain a “guard” that prevents it from being multiply defined. Traditional include
guards are thought to be more portable than #pragma once syntax. Place an include guard macro at the
top and bottom of every .hpp file. The include guard defines a symbol which mirrors the entire file path
from the source directory, ensuring that it will be unique across the entire project.

#ifndef UTILITIES_ CORE_STRING_HPP
#define UTILITIES_ CORE_STRING_HPP

Y
#endif //UTILITIES.-CORE-STRING-HPP

2.5.2.2 Macros

The use of macros is discouraged as the same effect can often be achieved with another method that is easier
to debug and maintain. Any macros deemed necessary must be well commented to help with debugging
and maintenance burden. If there are parameters, then the comment must describe them, including their
type. The comment must describe what the macro is supposed to do. Example usage should be provided
to clarify the intended use. If there are any side effects associated with the macro (such as incrementing a
global variable, the need for certain local identifiers to be defined, etc), then list them.

2.6 Classes

2.6.1 Object Oriented Design

We encourage the use of Object Oriented (OO) design because it helps encapsulate behavior and logic in
individual classes. Care should be taken to limit the coupling between classes so that they can be used in
more general ways than originally anticipated.

10

2.6.

The

2.6.

The

2.6.

2 Class Header Files

following is required in class header files.

. Surround code with an include guard (Section 2.5.2.1).

Forward declarations of other classes are preferred over #including the header files of those classes.
#includes are only required if the class is actually used in the declaration, not if it is merely referenced.
For instance, an #include is required if an instance of the other class is a member variable of the class
being declared, but not if a pointer (including boost: : shared_ptr) to that class is a member variable.
A forward declaration is also sufficient for classes referenced in member function declarations.

Classes in the public API must include Doxygen documentation. Otherwise, practice good commenting
habits, and use our code review comment format when appropriate (Section 2.10.2).

. Use const appropriately (Section 2.1, Section 2.7.5).

Place typedef statements and non-member helper functions related to the class immediately below the
class declaration.

Mark functions defined in header as inline.

Refrain from using convenience typedef names in public header files. For instance,
boost::optional<std::string> is preferred to OptionalString (in public hpp only). While the
latter is more readable (and shorter to type), the longhand version helps SWIG and Doxygen.

#include the appropriate *API .hpp file and place the appropriate *_API macro call between the class
keyword and your class name if your class is to be included in a OpenStudio dynamic library. (See the
utilities project for an example.)

3 Class Source Files

following is required in class source files.

. Source files should #include header files instead of using extern declarations.

. Practice good commenting habits, and use our code review comment format when appropriate. Doxy-

gen comments do not need to be written or maintained for cpp files (Section 2.10.2).
Follow the #include order outlined in Section 2.5.1.

Try to keep definitions (member and non-member functions, data initializations) in the same order as
the declarations in the hpp file.

4 Class Definitions

e The protection of every base class should be specifically stated. When one class is derived from another,

the default protection is private. Example:

class D : B {}; // D is privately derived from B

11

This is counter-intuitive as public inheritance is more commonly used. Thus, the compiler will generate
a warning for unspecified protection levels. It is best to specifically state whether the inheritance is
public, protected, or private. Example:

class D : public B {}; // correct

e Most designs require only public inheritance, any exceptions to this should be thoroughly documented.

e (lass organization: to provide a common layout of the interface a class offers, the definition of the
class should contain the following, in this order:

declaration of any friend functions and classes

the "public:” specifier

declarations of any static public functions

declarations of any static public data members

declarations of any public member functions

declarations of any public data members

the ”protected:” specifier

declarations of any static protected functions

© P N WD

declarations of any static protected data members

H
e

declarations of any protected member functions

[t
—_

. declarations of any protected data members

—_
[N)

. the "private:” specifier

[
w

. declarations of any static private functions

—
Y

. declarations of any static private data members

[
ot

. declarations of any private member functions

—
[=p}

. declarations of any private data members

Notes:

e protected and private data member names should start with “m_"
e the return type of a function must be explicitly stated

e Constructors, destructors, virtual functions, and input/output functions should not be inline

2.6.5 Code Definitions in Header Files

1. Any code defined in a header file should be marked inline or be a template specification. Inline functions
should be used only for single line get, set, and add methods.

2. Constructors completely defined by initialization commands may also be present in header files.

12

2.6.6 Inheritance and Virtual Functions

1. Every class with one or more virtual functions should have a virtual destructor. Since a derived class
object may be deleted through a base class pointer, the base class must have a virtual destructor to
ensure that the derived class destructor gets called. Otherwise, only the base class destructor will be
called, resulting in a probable memory leak.

2. A derived class should not redefine a default parameter for a virtual function.

3. A derived class should not redefine an inherited non-virtual function.

2.6.7 Friends

1. Since friends violate encapsulation and information hiding, they should be avoided whenever accessor
functions can be used just as efficiently.

2. Classes that require some amount of friendship with other classes should consider whether the scope
of the friendship can be limited to certain methods.

2.6.8 Nested Classes

Nested classes other than enumerations are not supported by SWIG and should not be used in exported
classes.

2.7 Functions

2.7.1 Inline

Use of inline is discouraged as it increases compile time. Only use inline if profiling indicates that a major
speed up would result.

Details

Inline is a function specifier that hints to the compiler that a function should be expanded inline at com-
pile time (C4++ In a Nutshell pg 307). The compiler is free to ignore the directive. If the compiler does
honor the hint, it generates code that is more tightly coupled and larger (Meyers (2005) #30). Also, inlin-
ing by default falls into the category premature optimization (http://en.wikiquote.org/wiki/Donald_
Knuth#Computer_Programming_as_an_Art_.281974.29). It is easy for a profiler to tell us what func-
tions should be inlined, but impossible for it to tell us which ones we inlined but should not have (C++
Coding Standards #8). Finally, any modern compiler will inline functions for you as part of its optimiza-
tions (http://msdn.microsoft.com/en-us/library/47238hez.aspx, http://gcc.gnu.org/onlinedocs/
gcc-4.4.2/gcc/Optimize-Options.html).

SWIG

The tighter coupling that is created by using inline may limit the ability to provide your C++ library
implementation in a library that can be replaced. That is, if inlining is used, you may have to recompile the

13

http://en.wikiquote.org/wiki/Donald_Knuth#Computer_Programming_as_an_Art_.281974.29
http://en.wikiquote.org/wiki/Donald_Knuth#Computer_Programming_as_an_Art_.281974.29
http://msdn.microsoft.com/en-us/library/47238hez.aspx
http://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/Optimize-Options.html

SWIG wrapper library for each change made to the corresponding C++ library. Therefore, it is strongly
recommended that inline not be used when generating SWIG libraries.

2.7.2 Function Overloading

Except for constructors, function overloading should be reserved for functions in which the meaning of the
overload is clear. Overloading and calling overloaded functions can decrease readability because it may not
be clear to the reader which version of the function is being called. Functions should not be overloaded on
the const-ness of the input arguments unless absolutely necessary and thoroughly documented.

2.7.3 Passing arguments

1. Pass double, int, unsigned, and bool as such, no need for const modifiers.

2. Pass all other function arguments as const& whenever possible to avoid unnecessary copying.

2.7.4 Return values

When returning multiple values from functions we prefer to return an object or struct. Alternatively, pair or
tuple types may be returned provided that the meaning of each member of return type is well documented.
We do not suggest returning multiple values by passing in reference arguments. Return values from functions
should follow these examples:

// Return a plain data type.

double doubleFunc(double x){
double result = 2.0xx;
return result;

}

// Return a plain data type that may or may not be set.
// Caller must assume it may not be set, similar to a pointer return value
boost :: optional <double> doubleFunc2(double x){
boost :: optional <double> result ;
if (x>= 0){
result = 2.0%xx;
}

return result;

}

// The following examples are related to returning references
// to a vector stored in a class

class BigObject{

public:

// return a const reference to the wvector, consider this a const method

// it may be better to return a copy and not a reference for multi—threading
// applications

14

const std::vector<Object>& objects () const {return m_objects;}
private:

std :: vector<Object> m_objects;

}s

2.7.5 Const-Correctness
Use const whenever possible (Meyers 2005; Sutter and Alexandrescu 2004; ?).
Detalils

Effective C++ suggests using const for any value that should never be modified, to provide compile-time
guarantees against logic errors. Example:

void foo(const std::vector<int> &v)

{

const size_t size = v.size (); // Cache size in const value
// use size_t as a cached value

Similarly, any methods that should not modify object data, such as ”getter” methods should be declared
const:

class MyType

{
public:
int getValue() const

{
}

private:
int m_value;

return m_value;

}s

Getter methods on custom containers that return references to internal data need to provide both const and
non-const versions to ensure that the container can be used in as many contexts as possible.

Standard containers such as std::vector are implemented in this way.

class Container

{

Type &operator [](int index) { ...
const Type &operator [](int index) const { ... }

}s

15

Exceptions

Do not provide both const and non-const overloads for parameters. The subtleties for when one version
would be chosen over another are nuanced, and the meaning of the function is likely unclear:

// Big don’t: Functions overloaded by argument constness
void doSomething(const std::vector<int> &p);
void doSomething(std :: vector<int> &p);

Similarly, do not implement both const and non-const versions of templated types, unless the design specif-
ically needs it. The danger is that the number of permutations would grow too quickly and the meaning of
the code being called is likely lost and the implementation is probably duplicated:

// Similar don’t (unless absolutely necessary)
void doSomething (const std::vector<boost::shared_ptr<int> > &p);
void doSomething (const std:: vector<boost::shared_ptr<const int> > &p);

Also:

// Unnecessary except in the most strictly defined code, instead
std :: vector<boost :: shared_ptr<int> > Class:: getData ();

std :: vector<boost :: shared_ptr<const int> > Class:: getData() const;
// Choose this:

std :: vector<boost ::shared_ptr<int> > Class::getData() const;

SWIG

Even though we know that SWIG discards const qualifiers (http://www.swig.org/Doc1.3/SWIGPlus.html#
SWIGPlus_nn37), we should not let that modify our use of const. Our exposed C++ will rarely, if ever, live
in isolation. We want to make the most use of the C++ type system; appropriate application of const can

help us find logic errors in our code at compile time (Sutter and Alexandrescu 2004).

We should be aware (and document where possible) that if both const and non-const versions of a function
exist the const version will likely never be called from within our SWIG code.

2.8 General

2.8.1 Strings
We are using std:string to store all character data. We assume that all std::string objects are UTF-8
encoded. String conversion functions are provided utilities/core/String.hpp. Other types of strings

(such as QString or std::wstring) may be used to interface with users through GUI, command line, or SWIG
bindings, but should be converted to std::string as soon as possible within the OpenStudio code base.

2.8.2 Paths

Use the typedef path in utilities/core/Path.hpp for all operations which access the filesystem. This
will be boost::filesystem: :wpath on Windows and boost::filesystem: :path on POSIX. Use the file

16

http://www.swig.org/Doc1.3/SWIGPlus.html#SWIGPlus_nn37
http://www.swig.org/Doc1.3/SWIGPlus.html#SWIGPlus_nn37

stream classes derived from boost::filesystem::fstream rather than std::fstream as they can take
either version of path.

2.8.3 Typedefs

Use typedefs to shorten the name of commonly used templates. In order to provide a consistent look and feel
std: :vector’s of objects should be suffixed with Vector (e.g. IddKeyVector), boost: : shared_ptr should be
suffixed with Ptr (e.g. IddKeyPtr), and boost::optional prefixed with Optional (e.g. OptionallddKey).
These names will correspond to the class names given to template instantiations exported by SWIG.

Exception: Use of these convenience typedefs is encouraged in all settings EXCEPT in public API header
files, where we prefer types fully spelled out, as this helps Doxygen and SWIG.

2.8.4 Memory Management

Avoid using malloc, free, or delete. Use smart pointers instead, and only call new within a smart pointer
constructor. This leaves memory management to the smart pointer and helps avoid crashes and memory
leaks.

2.8.5 Avoid Code Duplication

Refactor code to avoid duplication wherever possible.

2.8.6 Flow Control

All control structures must have braces surrounding the body of the code within the structure, even if the
body is only one statement, or even no statements. The body must be indented relative to the control
statement.

All switch statements must have a default case at the bottom even if its only purpose is to report an error. In
C++, the switch statement must be manually exited with a break statement, otherwise execution continues
to fall through. Usually, falling through is undesirable behavior. If falling through is actually desired for a
particular switch statement, that case must be commented well to explain why falling through is required.

2.8.7 Serialization

The boost Serialization library requires that classes register all member variables to be serialized. This is a
potential source of error as variables may be added to the class but not to the serialization. Where possible
serialization should be tested in unit tests.

Additional issues arise when serializing objects derived from an abstract base class. In this case, the abstract
base class should register itself with the macro BOOST_SERIALIZATION_ASSUME_ABSTRACT (in the class header
file); the derived classes should serialize their base object explicitly using the macro

BOOST_SERIALIZATION_BASE_OBJECT_NVP, and should be registered in an associated source file, for example:

1

17

#ifndef __APPLE__

BOOST_CLASS EXPORT (openstudio :: SectionHeading);
BOOST_CLASS EXPORT (openstudio :: Text);
BOOST_CLASS EXPORT (openstudio :: Table) ;

#endif

is an excerpt from src/utilities/document/Document.cpp.

2.8.8 SWIG Support

All C++ types parsed by SWIG should have a definition available to SWIG. This will produce the most
effective and usable target language wrappers. To accomplish this goal, a few things should be kept mind.

Exported templates

Template classes must be explicitly instantiated and exported in SWIG. In general, specific uses of a template
class that are common enough to have a typedef should be exported. The same name as the typedef should
be used for consistency.

Limit the Number of Types Exposed

The SWIG maintenance burden is primarily driven by the number of types that are exposed. Therefore, be
judicious in choosing types to export.

Be Careful about STL Types

The STL should be relied on as heavily as possible for yielding portable and reliable code. However, not

all STL types are supported by all SWIG target languages, so the STL types utilized should be carefully
chosen. A reading of the .i files provided for each target language in the SWIG distribution
(http://swig.svn.sourceforge.net/viewvc/swig/trunk/Lib/ruby/, http://swig.svn.sourceforge.net/
viewvc/swig/trunk/Lib/csharp/) provides the most reliable and accurate information about which types
have shipped support. Choose the minimum set of all types that are supported across all languages you
want to target.

All STL container types support easy conversions between themselves via iterators. Therefore, it is possi-
ble that using std::deque internal to the application is the best choice while having accessors that return
std::vector.

std :: vector<MyType> get_data ()
return std:: vector <MyType>(m
}

{
d

eque.begin (), m_deque.end());

Use the Pimpl Idiom

A common C++ technique known as the pImpl Idiom can be used to provide a streamlined interface to
a complex, internal class (http://c2.com/cgi/wiki?PimplIdiom, Sutter and Alexandrescu (2004) #43).
This technique is preferred for OpenStudio classes that require both SWIG export and features primarily
supported by pointers (polymorphism, data sharing).

18

http://swig.svn.sourceforge.net/viewvc/swig/trunk/Lib/ruby/
http://swig.svn.sourceforge.net/viewvc/swig/trunk/Lib/csharp/
http://swig.svn.sourceforge.net/viewvc/swig/trunk/Lib/csharp/
http://c2.com/cgi/wiki?PimplIdiom

2.9 Code Portability

The following simple rules will help code move more easily from one target platform to another. Word
lengths, byte and word order, alignment, argument evaluation, signs, and sign extensions are the major
causes of portability problems. To avoid such issues:

1. Avoid casting variables.

2. Avoid assumptions about signed variables (especially characters). Be very careful when mixing signed
and unsigned variables and when using the modulus operator.

3. Use standardized functions, macros, and typedefs porting inconsistencies.
4. Avoid code that depends on the evaluation order of function arguments.

5. All characters that are used in non-arithmetic cases (bit fields, etc.) must be declared to be unsigned.

Intentional non-portable code should be well documented and separated from portable code. For example,
if a certain piece of functionality requires several lines of non-portable code, then the developer should put
the non-portable code in a separate function, method or macro and invoke it from the primary function.

Standard libraries

Prefer the C++ standard libraries unless operating system specific calls are required. Place all operating sys-
tem specific implementations in one or more classes that can be easily replaced at compile time, centralizing
all of your OS specific code.

Boost

Boost is a widely used, highly portable C4++ library. It is often used as a staging ground for up-coming C++
language and standard library features. The use of Boost libraries is generally allowed, and is preferred to

the C++ standard libraries in some cases: boost::filesystem, boost::function and boost::asio.

The use of boost is not used recommended for SWIG facing code, with the exceptions of boost::shared_ptr
and boost::optional.

Multiple Compilers

Developers are encouraged to use multiple compilers to ensure portability. Furthermore, an extra level of
confidence can be gained by knowing that your code generates few or no warnings at high levels across
multiple platforms.

C++0x / TR1

The next version of the C++ language standard, C++40x, is under development. Most current compilers
support experimental library features inside the TR1 namespace.

We are currently not recommending the use of TR1 library features, since the language specification is still
in flux. Instead, use the Boost library, which is more stable and portable.

19

2.9.1 Compiler Warnings

Compiler warnings should be enabled to the highest "normal” levels. Compiler warnings should be eliminated
before code release.

Detalils

All compilers support esoteric warnings that generate more noise then useful information. However, all
warnings that the compiler authors think are important should be enabled. They will often help you find
portability and logic problems. For example, in Visual C++ at least warning level 3 (/W3) should be enabled,
as it is recommended for production code (http://msdn.microsoft.com/en-us/library/thxezb7y.aspx).
Similarly, -Wall warnings should be enabled in G++ (http://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/
Warning-Options.html). An interesting option for G++ that is not enabled with -Wall is -Weffc++4-, which
generates warnings for programming standards specified in Meyers (2005).

2.9.2 Exceptions

We allow our code to throw exceptions. However, the number of exceptions thrown should be limited
to the absolute minimum required. Exceptions should not be used to pass expected information between
components and should not be used as “convienient” methods for changing program execution paths. An
exception means something very bad has happened and the code cannot continue on in the manner it was
called. All thrown exceptions must be logged, see 2.9.3; use of the LOG_AND_THROW or LOG_FREE_AND_THROW
macros is encouraged. Valid situations to throw exceptions include object constructors called with parameters
that would invalidate an object’s state (e.g. conversion from string to number fails) or failed attempts to
access resources (e.g. missing files or out of memory errors). All exceptions thrown in our code must be
derived from std::exception, and should not be identically equal to std::exception (because gcc does
not recognize std::exception(const charx)). Additionally, all methods that throw exceptions must be
documented as such; it is assumed that unmarked methods do not throw. Because the C++ language does
not provide a method to enforce the types of exceptions thrown at compile time we mark exception throwing
methods with comments like /** throws ExceptionTypel, ExceptionType2, ... */.

Function calls to other libraries that may throw exceptions under relatively normal circumstances
(boost::filesystem comes to mind) must be wrapped in a try/catch block. If an exception is caught it
may be rethrown following the above guidelines.

2.9.3 Logging

Log messages alert users of unexpected conditions and assist developers with debugging. Several convenient
logging macros are provided. All classes should use the macro REGISTER_LOGGER ("my.log.channel") within
their private scope to register a logging channel associated with the class. The log channel name is hierarchical
with levels separated by ‘.. Each object should scope its log to its namespace and class name. For instance
the class openstudio: :model: :Building should use channel openstudio.model.Building. The following
logging levels are available:

1. Debug - detailed information for developers to use in debugging
2. Info - similar to Debug, but at a higher level, and possibly of interest to super-users

3. Warn - a situation which is likely the result of bad input or will result in suspect output and should

20

http://msdn.microsoft.com/en-us/library/thxezb7y.aspx
http://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/Warning-Options.html
http://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/Warning-Options.html

be brought to the attention of the user

4. Error - a situation which is definitely the result of bad input, will result in bad output, and must be
brought to the attention of the user

5. Fatal - the program cannot continue

Logging macros are also provided for Free functions. However, there is no REGISTER_LOGGER macro for
free functions so they must use the macros LOG_FREE, which requires an additional argument to spec-
ify the logging channel. The channel should be the namespace and then function name. So function
int openstudio::model::foo() would log to openstudio.model.foo. The following example shows how
to use the logging macros:

namespace foo{

// A class with logging
class Bar{
public:
Bar (){}
void doSomething ();
private:
REGISTERLOGGER(‘ foo .Bar”);

}s

// using logging in a member of a class with logging
Bar:: doSomething ()
{

// appropriate debug statement

LOG(Debug, ‘‘Entering Bar::doSomething”);

bool trouble = isTrouble ();

if (trouble){
// appropriate error statement
LOG(Error, ‘‘Ran in to trouble”);

}

// using stream operators in a log statement
LOG(Debug, ‘‘Leaving Bar::doSomething, trouble = 7 << trouble);

}

// using logging in a free function
bool isTrouble ()

{
int a = 1;
int b = 1;
int sum = a + b;

// first argument is the channel, second is the log message
LOGFREE(Debug, ‘‘foo.isTrouble”, ‘‘Entering foo::isTrouble”);

bool result = false;

21

if ((a!=Db) || (sum !'= 2)){

LOGFREE(Error, ¢‘foo.isTrouble”, ‘‘Trouble detected, a =7 << a <<
b =7 << b << YY) sum =7 << sum);
result = true;
¥
LOGFREE(Debug, ‘‘foo.isTrouble”, ‘‘Leaving foo::isTrouble, 7 <<
““result =7 << result);

return result ;

2.9.4 Unit Tests

We aim to sufficiently test all OpenStudio code to ensure that it functions as expected, both in regular use
and for corner cases. Writing unit tests before the code is fully functional is highly recommended. When
fixing bugs or tracing down input specific errors we ask that those problem cases be added to the unit test
suit to trap future error conditions or similar bugs. We compute code coverage analysis as one indicator of

whether or not code is tested sufficiently.

An important convention is that no output be written to standard out or standard error in unit tests.
Diagnostic information may be logged using the logging macros described in 2.9.3. Each test fixture disables

logging output to standard out and sends it to a file named test_fixture_name.log.

2.10 Formatting

2.10.1 Indentation and Wrapping

We standardize on the following to improve code readability:

1. Wrap lines at 100 columns. If a line needs to be split, then the split should occur at some functional

location (e.g., before/after the operator) and not just after the 100th character.
2. Indentation level/tab character is two spaces.
3. Use Windows-style line endings.

4. Indentation rules:

#ifndef BUILDING.MODELBUILDINGH // no indent
#define BUILDING MODEL_BUILDING_H

namespace building{ // no indent
namespace model{ // no indent

class Building{ // no indent
public: // 1 space

22

Building (){} // 2 spaces

openstudio :: String name() const; // 2 spaces
private: // 1 space

openstudio :: String momame; // 2 spaces

}s

// close each namespace on its own line, comment with name of namespace

Y // model
Y // building

// close the include guard
#endif // BUILDING-MODEL_BUILDING-H

Functions declarations and calls with many arguments can become too long to fit on a single line, in which
case we recommend:

// Preferred
ReturnType ClassName :: FunctionName (Type par_namel, Type par_name2) {
DoSomething (); // 2 space indent

}

// If there is too much text to fit on one line:
ReturnType ClassName :: ReallyLongFunctionName (Type par_namel ,
Type par_name2,
Type par_name3) {
DoSomething (); // 2 space indent

}

// If you cannot fit even the first parameter:
ReturnType LongClassName:: ReallyReallyReallyLongFunctionName (
Type par_namel, // 4 space indent
Type par_name?2,
Type par_name3) {
DoSomething (); // 2 space indent

}

// Const always goes on same line with closing), last parameter, and {
ReturnType LongClassName:: ReallyReallyReallyLongConstFunctionName (
Type par-namel, // 4 space indent
Type par_name?2,
Type par_name3) const {
DoSomething (); // 2 space indent

23

)

Detailed notes:

1. The return type is always on the same line as the function name.
2. The open parenthesis is always on the same line as the function name.
There is never a space between the function name and the open parenthesis.

The open curly brace is always at the end of the same line as the last parameter.

ook o w

The closing curly brace is either on the last line by itself or (if other style rules permit) on the same
line as the open curly brace.

There should be a space between the close parenthesis and the open curly brace.
All parameters should be named, with identical names in the declaration and implementation.

All parameters should be aligned if possible.

© »®» N o

Default indentation is 2 spaces.

10. Wrapped parameters have a 4 space indent.

2.10.2 Comments
Documentation is an important part of any software project. Even the best code is hard to understand or

maintain if it is not properly commented. Developers are encouraged to insert as many comments as needed
to explain the code.

2.10.2.1 Public Interface
Publicly available libraries, functions, classes, class methods, etc. are to be documented with Doxygen
(http://www.stack.nl/~dimitri/doxygen/manual.html). To generate our Doxygen html documentation,

build the corresponding _doc project(s), which appears when the BUILD_DOCUMENTATION option is checked
in CMake. There is a link to each project’s index.html in trunk/doc/index.html.

2.10.2.1.1 Classes and Free Functions

The following syntax is preferred for documenting classes, methods, and free functions:

/// Brief description. More descriptive text follows the first period.
/** Brief description. More descriptive text follows the first period. This

* format is a little more readable (in the code) when there are multiple
* lines */

Such descriptive code blocks should be placed directly above the item being documented, when it is declared
(in its header file). Doxygen provides basic markup commands to help with formatting:

24

http://www.stack.nl/~dimitri/doxygen/manual.html

\code, \endcode
\link, \endlink
\1i

Also see http://www.stack.nl/~dimitri/doxygen/commands.html, and http://www.stack.nl/~dimitri/
doxygen/htmlcmds.html. Please use \code, \endcode to markup example usage blocks:

\code

Idd0Object: :properties() .memo
IddObject: :properties() .minFields
IddField: :properties() .autosizable
\endcode

¥ ¥ X X %

and use \1link, \endlink to write readable hyperlinked text. For instance,

* ... for parsing and accessing \link IddFile IddFiles\endlink, and
* \link IddObject IddObjects\endlink ...

“

becomes, “ ... for parsing and accessing IddFiles and IddObjects ...,” while still providing links to IddFile
and IddObject.

To avoid needlessly verbose documentation, we prefer to document input arguments and return types in
the descriptive text, rather than using \param. (Even without \param tags, Doxygen does a good job of
highlighting the arguments (type and name) and return type, and our naming conventions should do a lot
to suggest the meaning of input arguments without us providing a detailed description.) Instead, focus on
documenting pre- and post-conditions, exceptional situations, and providing example usage.

o0OPENSTUDIO_ENUM is an exceptional case where we use a macro to generate new classes. To ensure docu-
mentation of those classes, explicitly declare the class name, as in:

/** \class IddFileType
* \brief Enumeration of the IddFiles available through IddFactory. */
oOPENSTUDIO_ENUM(IddFileType,

((EnergyPlus))

((OpenStudio)));

(Note that other Doxygen commands similar to \class are available, and may be of use in other situations
where Doxygen has a hard time linking a documentation block with the item being documented. For instance,
\file may be useful in some circumstances.)

A free function may be associated with a class by prepending its documentation with a \relates command.
For example,

/** \relates WorkspaceObject

25

http://www.stack.nl/~dimitri/doxygen/commands.html
http://www.stack.nl/~dimitri/doxygen/htmlcmds.html
http://www.stack.nl/~dimitri/doxygen/htmlcmds.html

* Helper function to get the handles of a vector of objects */
UTILITIES_API std::vector<Handle> getHandles (const std::vector<WorkspaceObject>& objects);

causes the documentation for getHandles to show up on the WorkspaceObject (class) documentation page,
rather than on the openstudio (namespace) page.

2.10.2.1.2 Libraries

Projects are documented by a special header file, mainpage.hpp that lives in that project’s folder under
src, and may be listed in the corresponding CMakeLists.txt file to make it easily editable through the
developer environment. For large projects (like OpenStudio_utilities), there may also be use for one or
more page . hpp files. Both types of files should primarily consist of one large code block surrounded by the
namespace declaration of the project. For example:

namespace openstudio {
/** \mainpage OpenStudio Utilities

*

* The utilities library provides common functionality used throughout OpenStudio.
* OpenStudio’s utilities live in the top level namespace of OpenStudio, openstudio.
* The following sub projects are defined:

*/

} // openstudio

(Placing the comment block in the namespace of the project being documented helps Doxygen link to
related documentation. If there are items in a sub-namespace that need to be referred to, you can use
the syntax \link foo::Bar Bar\endlink.) Mainpages show up as index.html in the generated HTML
documentation, and are the top-most link in the navigation pane.

Following the above mainpage.hpp example, page.hpp files should start with a \page command, which
differs in syntax from \mainpage in that it takes a label argument in addition to a title:

/** \page idd_page OpenStudio Idd

The reference tag (idd_page in the example) can then be used in that libary’s documentation to provide a
link to the page:

\ref idd_page

The \section command, which should be used in both mainpage.hpp and page.hpp files to break up the
text into logical segments follows a similar convention, and its labels are also available through the \ref
command.

OPENSTUDIO_ENUM and some other macros are called out in trunk/Doxyfile.in for Doxygen to expand in

place whenever it is used. Consider adding your macro to this list if you are having trouble documenting
the use of your macro in the public interface.

26

_APT macros should be predefined in trunk/Doxyfile.in so they do not show up in the documentation.
Search for UTILITIES_API in trunk/Doxyfile.in and follow its example.

2.10.2.2 Source Files

Source files should be well commented so that the intent of each step in the algorithm is clear. Every
item defined in a header file must have a corresponding comment that describes it. The following general
conventions should be followed when documenting protected and private code (i.e., cpp and the non-public
portions of hpp files):

1. Use C++ style comments, i.e. the double-slash

2. There should be enough documentation in the file so that a person who is familiar with the programming
language and generally familiar with the process can understand what the method is doing and how it
is doing it.

3. Comments that are on the same line as the code must be spaced over to the right, to be easily
distinguished from the code.

4. All variables except temporary loop index variables must be described.

5. All classes must be fully described where they are defined and should be briefly described wherever
else they are used.

6. Interactions between classes should be described.

The comments in the code are obviously important documentation to keep up to date; they follow the
source for the life of the code. When comments are kept accurate, the developers and others will benefit
tremendously. Please take the time to review them and update them as necessary. Developer comments
(e.g. from code reviews, etc) should be of the following format in order to retain information about who and
when they were added ”initials@date: comments”. For example, "DLM@20091225: I don’t like this code
and that is why am I working on Christmas”.

2.10.3 Old Code and Commented-out Code

There is no reason to keep old, unused code around since old code is always available through the svn
repository. It only clutters the files and usually, after long periods, is not related to the surrounding ”real”
code. Therefore, old code must be removed. If there is some reason that some old code should be in the
software base, but not executed, then the developer must comment out the code, with added explanatory
comments. Code that is to be removed at a specific date or milestone (e.g. handling a special case in a
soon-to-be deprecated version of a file) should be marked with the date or milestone at which it should be
removed.

2.10.4 Temporary Code

There are times when a developer needs to put temporary code into the project. For example, a stubbed
function, or an inefficient but quick implementation that only works for a small number of modules. Putting
temporary code into the software base is discouraged, but if necessary it should adhere to these standards

27

so it may be easily identified and removed at a later date. The most common problem with temporary code
is that, against intention, it becomes permanent. To overcome this problem, we require that all temporary
code be marked with a comment block containing a unique string that can be easily located in the base.
The string we will be using is:

// TEMPCODE START
// <describe why we have this code here, who is adding it (initials),
// date it was added>

.. actual temp code block
// TEMPCODE END

If START/END does not make sense or is not practical for the temporary code block, at least the TEMP-
CODE markup.

28

3 Ruby Coding Standards

The Ruby bindings to OpenStudio include a mix of compiled Swig generated extensions, pure Ruby libraries,
unit tests of both the extensions and Ruby libraries, and example scripts to help users get started. These
elements are packaged together and included in the OpenStudio installer. Centralizing all OpenStudio
functionality to a single install location allows user scripts to reference the OpenStudio API in a standard
way across computers and projects. Users reference the OpenStudio API from project specific scripts that
are out of the scope of the OpenStudio project. However, as user scripts become more developed and mature
we encourage them to be added back into the official OpenStudio distribution either as example scripts (low
complexity) or pure Ruby libraries (higher complexity). Ruby-only functionality that is widely used will be
ported to C++ so it can be available in bindings to other languages as well as the core C++ tools. The Ruby
coding standards generally follow the C++ standards. In this chapter we only describe points of departure
or clarify places where the C++ coding standards conflict with normal Ruby conventions.

3.1 Project Layout
The following name conventions are in place for Ruby files:

1. Ruby file extension - .rb

2. Directory names - lowercase

w

. File names (other than openstudio.rb) - UpperCamelCase

N

. Ruby unit tests extension - *_Test.rb

To limit complexity of Ruby include paths, all Ruby tests and scripts are assumed to be part of the Open-
Studio library, that the 1ib directory is in the user’s Ruby path, and that all required shared libraries are
in the system’s path (this is achieved during the require ’openstudio’ call). Therefore, all Ruby scripts
and libraries should refer to each other relative to the 1ib directory.

3.2 Naming

The top level module for OpenStudio code is OpenStudio. Sub modules are also used and follow the C++
namespaces for Swig extensions. Other conventions are:

e (lasses are upper camel case, e.g. DetailedGeometry

e Member functions and local variables are lower camel case, e.g. addVertex() and timeOfDay

e Enumerations as well as the enumerated items are upper camel case, e.g. enum Items{SmallItem, BigItem}

not enum Items{smallltem, bigItem}

e Unit test cases are upper camel case and post-fixed with _Test, individual tests are upper camel
cased and prefixed by test_. The idea is that test cases be easily recognizable in standard output
when running a large number of tests, use _ to indicate spaces for greater readability.

29

3.3 Unit Tests

We assume that C+4 portions of OpenStudio are sufficiently tested using the C++ unit tests. Therefore,
we do not require that all tests be duplicated for Ruby. However, we do encourage some testing of the Ruby
extensions, particularly in areas where Swig does something novel to the exported classes (e.g. changes a
name, maps types, etc). Pure Ruby libraries should be tested completely in Ruby. These tests are then
ported to C++ unit tests when the functionality is added to the C++ code base.

3.4 Indentation and Wrapping

We standardize on the following formatting conventions to improve code readability:

1. Wrap lines at 100 columns. If a line needs to be split, then the split should occur at some functional
location (e.g., before/after the operator) and not just after the 100th character.

2. Tab character is two spaces

3.5 Comments

Documentation is an important part of any source code. Even the most well written code is hard to
understand or maintain if it is not properly commented. Comments should be made in RDoc format for
documentation generation. The developer is encouraged to insert as many comments as needed to explain
the code, not just the minimum required.

30

	Introduction
	C++ Coding Standards
	General Guidelines
	External References
	References
	Links

	Project Layout
	Project Files
	Source Files
	External Dependencies

	Naming
	Namespaces
	Other Naming Conventions
	Naming Descriptiveness

	Files
	Include Statements
	Using Statements and Namespace Aliases

	Classes
	Object Oriented Design
	Class Header Files
	Class Source Files
	Class Definitions
	Code Definitions in Header Files
	Inheritance and Virtual Functions
	Friends
	Nested Classes

	Functions
	Inline
	Function Overloading
	Passing arguments
	Return values
	Const-Correctness

	General
	Strings
	Paths
	Typedefs
	Memory Management
	Avoid Code Duplication
	Flow Control
	Serialization
	SWIG Support

	Code Portability
	Compiler Warnings
	Exceptions
	Logging
	Unit Tests

	Formatting
	Indentation and Wrapping
	Comments
	Old Code and Commented-out Code
	Temporary Code

	Ruby Coding Standards
	Project Layout
	Naming
	Unit Tests
	Indentation and Wrapping
	Comments

